If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+3x-54=0
a = 3; b = 3; c = -54;
Δ = b2-4ac
Δ = 32-4·3·(-54)
Δ = 657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{657}=\sqrt{9*73}=\sqrt{9}*\sqrt{73}=3\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{73}}{2*3}=\frac{-3-3\sqrt{73}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{73}}{2*3}=\frac{-3+3\sqrt{73}}{6} $
| z-5/7=-13 | | -2(8x-3)+4=8-4(4x+1) | | 9h-28=34 | | 6s-19-20s=15s-3 | | 3(5x+5)=-33+18 | | v/2-1=1.1 | | 3x+5=0x+2 | | 435+60x=755+50x | | x+x=24+x+6 | | 19-h=-17-16+3h | | -5(5.75+3.1x)=6.2(2.5x+1.9) | | 2x+4=-(-7x | | 9=-3(x-5 | | -4x+4+3x=-2x-2 | | 3k-8/3=5 | | 4(2x+)=5+8x-2 | | x+x=24+x*6 | | 10b+4=3b+32 | | (2x+1)=(x+23) | | p=(1/2)p+15 | | 15y+31=618 | | 3y(5y-1)=-20y+4 | | (2x+1)°=(x+23)° | | -7(-3v-3)=168 | | -10.2-12.44=5.3h+19.02+13.1h | | 30-12v=-12v+1 | | x+78+74+55+(x+45)=360 | | 12+10x=22+7.5x | | 72+1.5x=68+2x= | | (2x-10)+108=180 | | 7x-4=-3-1 | | 7g-19=9g+7 |